Serious Fun with Flexagons
A Compendium and Guide
Serious Fun with Flexagons
Aims and Scope of the Series

The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.
About the Author

Leslie Philip (Les) Pook was born in Middlesex, England in 1935. He obtained a B.Sc. in metallurgy from the University of London in 1956. He started his career at Hawker Siddeley Aviation Ltd., Coventry in 1956. In 1963 he moved to the National Engineering Laboratory, East Kilbride, Glasgow. In 1969, while at the National Engineering Laboratory, he obtained a Ph.D. in mechanical engineering from the University of Strathclyde. Dr. Pook moved to University College London in 1990. He retired formally in 1998 but remained professionally active in the fields of metal fatigue and fracture mechanics, and is affiliated to University College London as a visiting professor. He now has more time to pursue long standing interests in recreational mathematics, including flexagons, and in horology, especially synchronous electric clocks. He is a Fellow of the Institution of Mechanical Engineers and a Fellow of the Institute of Materials, Minerals and Mining. Les married his wife Ann in 1960. They have a daughter, Stephanie, and a son, Adrian.
Preface

Flexagons are rings of hinged polygons that have the intriguing property of displaying different pairs of faces when they are flexed. Workable paper models of flexagons are easy to make and entertaining to manipulate. Flexagons have a surprisingly complex mathematical structure, and just how a flexagon works is not obvious on casual examination of a paper model. The aesthetic appeal of flexagons is in their dynamic behaviour rather than the static appeal of, say, polyhedra. One of the attractions of flexagons is that it is possible to explore their dynamic properties experimentally as well as theoretically. Flexagons may be appreciated at three different levels. Firstly as toys or puzzles, secondly as a recreational mathematics topic, and finally as a subject of serious mathematical study.

My book *Flexagons Inside Out* was published in 2003 by Cambridge University Press. Since then there has been an upsurge in interest in flexagons. Enthusiasts can keep in touch through the *Flexagon Lovers Group*, hosted by Yahoo, and moderated with a light touch by Ann Schwartz. Details of some interesting flexagons have been posted by Group members, and I have enjoyed some stimulating exchanges with other members of the Group. The amount of new information available means that *Flexagons Inside Out* is now outdated. Further geometric analysis has also led to a much better understanding of the behaviour of flexagons, and has in turn led to the discovery of previously unknown flexagons, some of them with entertaining dynamic properties.

Most of the material in the book is new. It is arranged in a logical order appropriate for a textbook on the geometry of flexagons. Extensive cross references are included so that individual chapters do not have to be read in order. Definitions are included in the index so that they can be easily located. It is assumed that the reader already has an interest in flexagons, and has some knowledge of elementary geometry. The book is written so that it can be enjoyed at both the recreational mathematics level, and at the serious mathematics level. In general, detailed proofs are long and tedious, so they are not included. Where there is uncertainty over the accuracy of a conclusion this is made clear in the text. Basic material from *Flexagons Inside Out* is referenced only where needed for clarity but, where appropriate, new material is fully referenced. There are a few errors in *Flexagons Inside Out*, and these are corrected in the present book. In some ways the book is an updated version of the 1962 book length report *Flexagons* by Conrad and Hartline, which is available on the Internet.
A feature of the book is a compendium of over 100 nets for the construction of paper models of some of the more interesting flexagons. These are reproduced at approximately half full size. Many of the nets have not previously been published. The flexagons have been chosen to complement the text, with particular emphasis on demonstrating relationships between different types of flexagon. Three spectacular examples are included. These are the octopus flexagon, the hexa-dodeca-flexagon and the thrice threefold flexagon. Detailed instructions for assembling and manipulating individual flexagons are included for the benefit of those who wish to enjoy flexagons without going into the mathematics. Photographs of some flexagons are included to assist assembly and manipulation.

Most flexigators who move on from making up flexagons from published nets try folding up promising looking nets to see what happens. This bottom up approach has led to the discovery of some interesting flexagons. The top down approach used in this book makes it possible to analyse and understand the dynamic properties of any flexagon. It is also makes it possible to design flexagons having desired properties. Manipulating paper models of the resulting flexagons often reveals unexpected properties that were not predicted theoretically.

January 2009

Les Pook

I do not know how far it is possible to convey to any one who has not experienced it, the peculiar interest, the peculiar satisfaction that lies in a sustained research when one is not hampered by want of money.

H G Wells, *Tono-Bungay*
Contents

1 **Introduction** ... 1

1.1 General Features .. 1
1.2 Terminology ... 5
1.3 Outline of Book .. 9
1.4 Making Flexagons ... 11
 1.4.1 General Assembly Instructions ... 12
 1.4.2 The Two Sector First Order Fundamental Square Even Edge Flexagon 13
References .. 13

2 **Polygon Rings** ... 15

2.1 Introduction .. 15
 2.1.1 Multiple Polygons ... 16
 2.1.2 Combinations ... 17
2.2 Edge Rings of Regular Polygons .. 17
 2.2.1 General Properties ... 17
 2.2.2 Regular Even Edge Rings .. 20
 2.2.3 Regular Odd Edge Rings ... 21
 2.2.4 Compound Edge Rings ... 23
 2.2.5 Irregular Edge Rings .. 26
2.3 Edge Rings of Irregular Polygons .. 27
 2.3.1 General Properties ... 27
 2.3.2 Even Edge Rings of Silver and Bronze Triangles ... 28
2.4 Vertex Rings ... 29
 2.4.1 General Properties ... 29
 2.4.2 Vertex Rings of Squares ... 30
References .. 31
3 **Fundamental Nets** .. 33
 3.1 Introduction... 33
 3.2 First Order Fundamental Edge Nets ... 34
 3.3 Second Order Fundamental Edge Nets ... 34
 3.4 Fundamental Vertex Nets.. 36
 3.5 Fundamental Silver and Bronze Edge Nets ... 41
 References.. 41

4 **Fundamental Edge Flexagons** .. 43
 4.1 Introduction... 43
 4.1.1 Standard Face Numbering Sequences... 44
 4.1.2 Truncated Flexagons ... 44
 4.2 First Order Fundamental Even Edge Flexagons .. 45
 4.2.1 General Properties.. 45
 4.2.2 Ring Even Edge Flexagons ... 50
 4.2.3 First Order Fundamental Triangle Even Edge Flexagons 51
 4.2.4 First Order Fundamental Square Even Edge Flexagons 53
 4.2.5 Detailed Analysis of Flexagons ... 54
 4.2.6 First Order Fundamental Pentagon Even Edge Flexagons 58
 4.2.7 First Order Fundamental Hexagon Even Edge Flexagons 62
 4.2.8 First Order Fundamental Octagon Even Edge Flexagons 64
 4.2.9 First Order Fundamental Dodecagon Even Edge Flexagons 66
 4.3 Second Order Fundamental Odd Edge Flexagons 68
 4.3.1 General Properties.. 68
 4.3.2 Second Order Fundamental Triangle Odd Edge Flexagons 69
 4.3.3 A Second Order Fundamental Square Odd Edge Flexagon 72
 4.3.4 A Second Order Fundamental 20-gon Odd Edge Flexagon 74
 References.. 75

5 **Fundamental Skeletal and Point Flexagons** ... 77
 5.1 Introduction... 77
 5.2 First Order Fundamental Even Skeletal Flexagons 78
 5.2.1 General Properties.. 78
 5.2.2 First Order Fundamental Triangle Even Skeletal Flexagons 79
 5.2.3 A First Order Fundamental Square Even Skeletal Flexagon 81
5.3 Fundamental Point Flexagons

5.3.1 General Properties and Unagons

5.3.2 The Fundamental Triangle Point Flexagon

5.3.3 The Fundamental Square Point Flexagon

5.3.4 Fundamental Pentagon Point Flexagons

5.3.5 The Fundamental Hexagon Point Flexagon

5.4 Interleaved Fundamental Point Flexagons

5.4.1 General Properties

5.4.2 The Interleaved Fundamental Pentagon Point Flexagon

5.4.3 An Interleaved Fundamental Enneagon Point Flexagon

5.5 Augmented Fundamental Point Flexagons

5.5.1 General Properties

5.5.2 An Augmented Fundamental Triangle Point Flexagon

5.5.3 An Augmented Fundamental Square Point Flexagon

5.6 Augmented Interleaved Fundamental Point Flexagons

5.6.1 General Properties

5.6.2 Augmented Interleaved Fundamental Triangle Point Flexagons

5.6.3 An Augmented Interleaved Fundamental Square Point Flexagon

References

6 Fundamental Compound Edge Flexagons

6.1 Introduction

6.2 General Properties

6.3 Triangular Fundamental Compound Edge Flexagons

6.3.1 Some Properties

6.3.2 A Fundamental Square Compound Edge Flexagon

6.3.3 A Fundamental Pentagon Compound Edge Flexagon

6.4 A Square-Like Fundamental Compound Edge Flexagon

6.4.1 Some Properties

6.4.2 A Fundamental Hexagon Compound Edge Flexagon

6.5 Pentagonal Fundamental Compound Edge Flexagons

6.5.1 Some Properties

6.5.2 A Fundamental Square Compound Edge Flexagon

6.5.3 A Fundamental Hexagon Compound Edge Flexagon

6.6 A Hexagonal Fundamental Compound Edge Flexagon

6.6.1 Some Properties

6.6.2 A Fundamental Octagon Compound Edge Flexagon

6.7 Heptagonal Fundamental Compound Edge Flexagons

6.7.1 Some Properties

6.7.2 A Fundamental Hexagon Compound Edge Flexagon

6.7.3 A Fundamental Decagon Compound Edge Flexagon

References
7 Irregular Cycle Flexagons

7.1 Introduction

7.2 Irregular Cycle Even Edge Flexagons

7.2.1 General Properties

7.2.2 Derivation of Nets

7.2.3 The Irregular Cycle Square Even Edge Flexagon

7.2.4 An Irregular Cycle Pentagon Even Edge Flexagon

7.2.5 Irregular Cycle Hexagon Even Edge Flexagons

7.3 Irregular Cycle Interleaved Point Flexagons

7.3.1 General Properties

7.3.2 Interleaf flexes

7.3.3 The Irregular Cycle Interleaved Square Point Flexagon

7.3.4 Irregular Cycle Interleaved Pentagon Point Flexagons

7.3.5 Irregular Cycle Interleaved Hexagon Point Flexagons

7.3.6 Augmented Irregular Cycle Interleaved Triangle Point Flexagons

7.4 Distinct Face Numbering Sequences

7.5 Irregular Cycle Non Interleaved Point Flexagons

7.5.1 General Properties

7.5.2 The Irregular Cycle Non Interleaved Square Point Flexagon

7.5.3 An Irregular Cycle Non Interleaved Pentagon Point Flexagon

References

8 Degenerate Flexagons

8.1 Introduction

8.2 Degenerate Even Edge Flexagons

8.2.1 General Properties

8.2.2 A Degenerate Square Even Edge Flexagon

8.2.3 Degenerate Pentagon Even Edge Flexagons

8.2.4 Degenerate Hexagon Even Edge Flexagons

8.2.5 Degenerate Octagon Even Edge Flexagons

8.2.6 A Degenerate Dodecagon Even Edge Flexagon

8.3 Degenerate Non Interleaved Point Flexagons

8.3.1 General Properties

8.3.2 The Degenerate Non Interleaved Square Point Flexagon

8.3.3 Degenerate Non Interleaved Pentagon Point Flexagons

8.4 Degenerate Irregular Cycle Interleaved Point Flexagons

8.4.1 General Properties

8.4.2 Degenerate Interleaved Triangle Point Flexagons

References
8.5 Degenerate Compound Edge Flexagons.......................... 169
8.5.1 General Properties .. 169
8.5.2 The Degenerate Square-Like Hexagon Compound Edge Flexagon 171
8.5.3 Degenerate Pentagonal Compound Edge Flexagons 172

9 Irregular Ring Even Edge Flexagons ... 175
9.1 Introduction... 175
9.1.1 Fundamental Irregular Ring Even Edge Flexagons 175
9.2 Irregular Ring Triangle Even Edge Flexagons...................... 177
9.2.1 General Properties .. 177
9.2.2 An Irregular Ring 12 Triangle Even Edge Flexagon 177
9.2.3 An Irregular Ring Eight Triangle Even Edge Flexagon 178
9.2.4 An Irregular Ring 16 Triangle Even Edge Flexagon 179
9.3 Irregular Ring Square Even Edge Flexagons........................ 179
9.3.1 General Properties .. 179
9.3.2 Irregular Ring Six Square Even Edge Flexagons 180
9.3.3 Irregular Ring Eight Square Even Edge Flexagons 183
9.4 Irregular Ring Pentagon Even Edge Flexagons.................... 186
9.4.1 General Properties .. 186
9.4.2 An Irregular Ring Six Pentagon Even Edge Flexagon 187
9.4.3 An Irregular Ring Eight Pentagon Even Edge Flexagon 190
9.5 Irregular Ring Hexagon Even Edge Flexagons..................... 191
9.5.1 General Properties .. 191
9.5.2 An Irregular Ring Six Hexagon Even Edge Flexagon 192
9.5.3 Irregular Ring Eight Hexagon Even Edge Flexagons 194
9.6 Irregular Ring Dodecagon Even Edge Flexagons.................. 197
9.6.1 General Properties .. 197
9.6.2 Irregular Ring Eight Dodecagon Even Edge Flexagons 198

10 Irregular Polygon Edge Flexagons ... 201
10.1 Introduction... 201
10.1.1 Transformation of Polygons 202
10.1.2 Stretch Flexagons and Stretch Polygon Rings 203
10.2 Irregular Triangle Edge Flexagons.................................... 203
10.2.1 Irregular Triangles.. 203
10.2.2 Isosceles Triangle Edge Rings 204
10.2.3 Bronze Even Edge Rings ... 206
10.2.4 Isosceles Triangle Even Edge Flexagons 207
10.2.5 Isosceles Triangle Odd Edge Flexagons 214
10.2.6 Scalene Triangle Even Edge Flexagons 216
10.2.7 A Partial Overlap Bronze Even Edge Flexagon 228
10.2.8 A Scalene Triangle Even Edge Flexagon.................... 229
10.3 Irregular Quadrilateral Even Edge Flexagons ... 231
 10.3.1 Irregular Quadrilaterals .. 231
 10.3.2 Irregular Quadrilateral Even Edge Rings .. 232
 10.3.3 A Rectangle Even Edge Flexagon ... 233
 10.3.4 Rhombus Even Edge Flexagons .. 235
 10.3.5 A Trapezium Even Edge Flexagon .. 239

10.4 Irregular Pentagon Even Edge Flexagons ... 240
 10.4.1 Irregular Pentagons .. 240
 10.4.2 Irregular Pentagon Even Edge Rings .. 241
 10.4.3 An Equiangular Irregular Pentagon Even Edge Flexagon............... 242
 10.4.4 An Irregular Ring Eight Irregular Pentagon Even Edge Flexagon 244

References .. 244

11 Complex Flexagons .. 247

11.1 Introduction .. 247

11.2 Linked Even Edge Flexagons .. 249
 11.2.1 Methods of Linking .. 249
 11.2.2 Linked Hexaflexagons ... 251
 11.2.3 Linked Square Even Edge Flexagons ... 255
 11.2.4 Linked Pentagon Even Edge Flexagons 262
 11.2.5 Linked Silver Even Edge Flexagons ... 265
 11.2.6 Linked Bronze Even Edge Flexagons .. 271

11.3 Linked Point Flexagons .. 277
 11.3.1 Methods of Linking .. 277
 11.3.2 Linked Triangle Point Flexagons ... 278
 11.3.3 Linked Square Point Flexagons .. 279

11.4 Conjoined Point Flexagons .. 282
 11.4.1 General Properties .. 282
 11.4.2 Conjoined Triangle Point Flexagons ... 283
 11.4.3 A Conjoined Pentagon Point Flexagon 284

11.5 Bundled Odd Edge Flexagons .. 284
 11.5.1 General Properties .. 284
 11.5.2 A Five Sector Bundled Triangle Odd Edge Flexagon 286
 11.5.3 The Seven and Six Flexagon .. 287

11.6 Slipagons .. 288
 11.6.1 General Properties .. 288
 11.6.2 A Trihexaflexagon Slipagon ... 288
 11.6.3 A Partial Overlap Silver Even Edge Slipagon 290

11.7 Coupled Point Flexagons .. 292
 11.7.1 General Properties .. 292
 11.7.2 A Coupled Triangle Point Flexagon ... 295
 11.7.3 A Coupled Square Point Flexagon .. 296

References .. 298
12 Miscellaneous Flexagons ... 299
 12.1 Introduction .. 299
 12.2 Three Sector Odd Flexagons ... 300
 12.2.1 General Properties .. 300
 12.2.2 The Three Sector Fundamental Dodecagon
 Odd Edge Flexagon .. 300
 12.2.3 A Three Sector Isosceles Triangle
 Odd Edge Flexagon .. 301
 12.2.4 A Three Sector Hexagon Odd Skeletal Flexagon 302
 12.3 Degenerate Odd Edge Flexagons .. 304
 12.3.1 General Properties .. 304
 12.3.2 A Degenerate Square Odd Edge Flexagon 304
 12.4 Alternating Odd Edge Flexagons .. 305
 12.4.1 General Properties .. 305
 12.4.2 A Square Alternating Odd Edge Flexagon 306
 12.5 Flapagons .. 308
 12.5.1 General Properties .. 308
 12.5.2 The Fundamental Square Duplex Flapagon 308
 12.5.3 A Square Flapagon–Flexagon Hybrid 309
 12.5.4 The Fundamental Isosceles
 Triangle Triplex Flapagon ... 309
 12.6 Multiplex Edge Flexagons ... 310
 12.6.1 General Properties .. 310
 12.6.2 A Square Duplex Edge Flexagon 311
 12.6.3 The Thrice Threefold Flexagon ... 313
 12.7 A Hooke’s Joint Flexagon .. 321
References ... 323

Index .. 325
1.1 General Features

Flexagons are a twentieth century discovery (Gardner 1965, 2008; Pook 2003). Arthur H Stone, a postgraduate student at Princeton University in America, discovered them in 1939 while folding strips of paper. Figure 1.1a is a photograph of a trihexaflexagon, which was the first type of flexagon to be discovered. The black and white photographs of flexagons in this book are nearly all of models made either from coloured card, coloured origami paper, or from origami duo paper, which is differently coloured on its two surfaces. The appearance of some flexagons is shown as a line diagram such as the ring of four squares shown in Fig. 1.1b.

Workable paper (or card) models of flexagons are easy to make and entertaining to manipulate. They have the intriguing property of displaying different pairs of faces, sometimes in cyclic order, when they are flexed. Flexagons have a surprisingly complex mathematical structure, and just how a flexagon works is not obvious on casual examination of a paper model. The aesthetic appeal of flexagons is in their dynamic behaviour rather than the static appeal of, say, polyhedra. One of the attractions of flexagons is that it is possible to explore their dynamic properties experimentally as well as theoretically. Manipulation of paper models often reveals configurations that have not been predicted theoretically.

A flexagon is a motion structure that has an infinity of states (positions). An umbrella is an everyday example of a motion structure. An edge flexagon consists of a band of identical polygons hinged at common edges by edge hinges. The individual polygons in a flexagon, called leaves, are usually identical (congruent) and are usually regular convex polygons. However, some flexagons consist of other types of convex polygons, and leaves are not always identical. If one hinge of a band is disconnected the band can be laid flat and used as a net to construct a flexagon. Nets are sometimes called templates or friezes. A band of 8 edge hinged squares that has been cut and laid flat as the net for a square even edge flexagon is shown in Fig. 1.2. Assembly and flexing instructions for this flexagon are given in Section 1.4.2. This particular flexagon is a twisted band. This can be seen by disconnecting a hinge...